BOOTSTRAP METHODS FOR MARKOV PROCESSES By Joel
نویسندگان
چکیده
The block bootstrap is the best known bootstrap method for time-series data when the analyst does not have a parametric model that reduces the data generation process to simple random sampling. However, the errors made by the block bootstrap converge to zero only slightly faster than those made by first-order asymptotic approximations. This paper describes a bootstrap procedure for data that are generated by a Markov process or a process that can be approximated by a Markov process with sufficient accuracy. The procedure is based on estimating the Markov transition density nonparametrically. Bootstrap samples are obtained by sampling the process implied by the estimated transition density. Conditions are given under which the errors made by the Markov bootstrap converge to zero more rapidly than those made by the block bootstrap.
منابع مشابه
Bootstrap prediction intervals for Markov processes
Given time series data X1, . . . , Xn, the problem of optimal prediction of Xn+1 has been well-studied. The same is not true, however, as regards the problem of constructing a prediction interval with prespecified coverage probability for Xn+1, i.e., turning the point predictor into an interval predictor. In the past, prediction intervals have mainly been constructed for time series that obey a...
متن کاملBootstrap Methods for Time Series
The chapter gives a review of the literature on bootstrap methods for time series data. It describes various possibilities on how the bootstrap method, initially introduced for independent random variables, can be extended to a wide range of dependent variables in discrete time, including parametric or nonparametric time series models, autoregressive and Markov processes, long range dependent t...
متن کاملHandbook of Statistics
The chapter gives a review of the literature on bootstrap methods for time series data. It describes various possibilities on how the bootstrap method, initially introduced for independent random variables, can be extended to a wide range of dependent variables in discrete time, including parametric or nonparametric time series models, autoregressive and Markov processes, long range dependent t...
متن کاملOn robustness of model-based bootstrap schemes in nonparametric time series analysis
Theory in time series analysis is often developed in the context of nite-dimensional models for the data generating process. Whereas corresponding estimators such as those of a conditional mean function are reasonable even if the true dependence mechanism is of a more complex structure, it is usually necessary to capture the whole dependence structure asymptotically for the bootstrap to be vali...
متن کاملBootstrap for continuous - time processes
An Edgeworth expansion of a Studentized statistic for an ergodic regenerative strong Markov process is validated. A specific nonparametric bootstrap method is proposed and proved to be second-order correct in the light of the Edgeworth expansion, which is a variant of the regenerative block bootstrap designed for discrete-time Markov processes. One-dimensional diffusions and semi-Markov process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003